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upper percentiles in an exposure distribution 
(Chatterjee et al. 2008). The 90th percentile 
NHANES dietary values used by the FDA 
(2010) therefore cannot be characterized as 
biased toward safety. 

The National Toxicology Program 
(2005) and the California Environmental 
Protection Agency Office of Environmental 
Health Hazard Assessment (2005) have 
determined that there is sufficient evidence 
to consider naphthalene a carcinogen. The 
FDA’s reliance on an outdated determination 
by the U.S. EPA (1998) does not constitute 
a conservative assessment of the health risks 
associated with exposures to naphthalene. 

Dickey offers the example of the cancer 
potency factor for benzo(a)pyrene (BaP) as 
specifically demonstrating a “bias toward 
safety” based on his assertion that it reflects 
the “95% upper confidence limit of the 
dose–response curve.” This characterization 
does not match the description of the 
cancer potency factor on the Integrated 
Risk Information System (IRIS) website 
(U.S. EPA 1994). In fact, the cancer potency 
factor was based on the “geometric mean 
of four slope factors obtained by differing 
modeling procedures” (U.S. EPA 1994). 
Dickey further asserts that the cancer 
potency factor “could be as low as zero,” 
which implies no cancer risk and therefore 
contradicts the designation of BaP as a 
carcinogen by multiple authoritative bodies 
including the FDA (2010), U.S. EPA 
(1994), Food and Agriculture Organization 
of the United Nations (FAO)/WHO (2006), 
and the International Agency for Research 
on Cancer (IARC 1998). 

Last, Dickey cites estimates of annual BaP 
dietary intake, which he attributes to natural 
occurrence, as a rationale for not considering 
the lower acceptable exposure levels we 
proposed in our commentary (Rotkin-
Ellman et al. 2012). Unfortunately this logic 
is severely flawed and does not comport with 
the FDA’s charge to protect public health. 
For an adult, with values based on standard 
risk assessment methods, the range of total 
dietary intake Dickey describes (0.16–3.3 
µg/person/day) corresponds to a lifetime 
cancer risk ranging from 1.7  ×  10–5 to 
3.4 × 10–4—the upper value exceeding what 
Dickey cites as an acceptable risk range 
of 1 × 10–4 to 1 × 10–6. An appropriate 
FDA response to this finding would be to 
investigate sources of dietary exposure to 
PAHs and enact policies to reduce unsafe 
exposures. This is what the European Union 
has done in setting standards for BaP in foods 
of concern (oils and fats, smoked meats, 
smoked fish, fish, crustaceans, mollusks, baby 
food, and infant formula) (European Food 
Safety Authority 2008). To argue that the 
presence of existing (and potentially unsafe) 

exposures precludes a thorough assessment 
of risk for vulnerable populations—because 
it might identify further risks—runs counter 
to the tenet of disease prevention inherent in 
public health protection. 

The FDA’s assessments of the risks from 
contaminants in seafood (e.g., PAHs, mer-
cury), food additives (e.g., bisphenol  A, 
phthalates), and chemicals used in personal 
care products (e.g., triclosan) have implica-
tions for the health of millions of Americans. 
We hope that our commentary and these 
letters are the beginning of a fruitful dialogue 
on how to incorporate advances in the scien-
tific understanding of the impacts of chemical 
contaminants on vulnerable populations into 
all risk assessments and policies at the FDA. 

M.R.-E. and G.M.S. are employed by the 
Natural Resources Defense Council, a nonprofit 
environmental advocacy group.
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Fields and Forests in Flames: 
Lead and Mercury Emissions from 
Wildfire Pyrogenic Activity
http://dx.doi.org/10.1289/ehp.1104672

In the article “Fields and Forests in Flames,” 
Weinhold (2011) addressed the toxic health 
effects associated with fire smoke. Although 
he acknowledged the limited data on the 
toxicity of wildfires, several important studies 
on environmental emissions from fire events 
and their consequences were omitted. 

Weinhold (2011) listed multiple com-
pounds from wildfires, back burning, and 
incinerated buildings, but listed only four 
elements: potassium, chlorine, sulfur, and 
silicon. Significant omissions were the toxic 
elements lead and mercury. Lead has been 
identified as one of the most environmentally 
pervasive and damaging metals to human 
health (Patterson 1965).

Several studies have detailed the remobili
zation of metals from fire events (e.g., Finley 
et al. 2009; Nriagu 1989; Odigie and Flegal 
2011; Young and Jan 1977). These studies 
showed that significant levels of toxic and 
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nontoxic metals are emitted into the environ
ment during fires. Young and Jan (1977) 
found that smoke from a 1975 Californian 
wildfire emitted various metals, including 
cadmium, chromium, copper, iron, lead, 
manganese, nickel, silver, and zinc, up to 
100 km from the fire. Contamination of 
local marine waters with lead, iron, and 
manganese from the wildfire exceeded the 
polluting effects of the local municipal 
wastewater, the main source of metals.

Nriagu (1989) and Finley et al. (2009) 
estimated that the amount of lead (plus other 
trace metals) and mercury, respectively, from 
fires were comparable to emissions from 
anthropogenic sources such as industrial 
processes and city pollution. Nriagu 
(1989) estimated that global emissions of 
lead from wildfires ranged from 60,000 
to 3,800,000 kg/year, with an average of 
1,900,000 kg/year. Global mercury emissions 
from wildfires are also significant, estimated 
at 890,000 ± 490  kg/year for gaseous 
elemental mercury and 170 ± 100 kg/year for  
particulate-bound mercury (Finley et  al. 
2009). Until recently it was not known 
whether lead released by wildfires is from 
natural and or industrial sources. Odigie and 
Flegal (2011) measured the isotopic lead 
composition of ash from the 2009 Jesusita 
Fire in Southern California. Their work 
showed clearly that the ash from the wildfire 
contained industrial lead primarily from 
leaded gasoline used in Southern California 
during the 1960s through the 1980s. 

Environmental media, such as air, dust, 
sediment, soil, and water, have well-defined 
and strict environmental and human health 
guidelines because of their damaging effect 
on natural and anthropogenic systems. Even 
low levels of atmospheric lead emissions 
are known to cause adverse human health 
effects, including irreversible neuro
logical damage. For example, the U.S. 
Environmental Protection Agency (EPA) 
recently reduced the lead-in-air guideline 
by an order magnitude—from 1.5 µg/m3 to 
0.15 µg/m3—after reviewing > 6.000 human 
health–lead-related studies (U.S.  EPA 
2008). Although pyrogenic activity affects 
environmental quality, its effects remain ill-
defined, despite evidence of harmful human 
health effects from exposure to toxicants, 
even at very low levels (Lanphear et  al. 
2005). The risk from fires is likely to increase 
as the frequency of climatically driven 
fire events rises in response to predicted 
global warming (Intergovernmental Panel 
on Climate Change 2007). The predicted 
environmental changes present a significant 
research opportunity for those interested in 
monitoring the biogeochemical cycling of 
metals and their potential risk of harm to 
human and environmental health systems. 
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Editors’ note: We thank Kristensen and 
Taylor for their comments. They are a useful 
addition to the information provided in 
Weinhold’s news article, which addressed an 
extensive list of other toxic substances and 
mentioned mercury only briefly.
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Errata

In the article “Temporal Variability of Tungsten and Cobalt in Fallon, Nevada” by 
Sheppard et  al. [Environ Health Perspect 115:715–719 (2007)], “the Mann-Whitney 
test of medians” should have been “the Mann-Whitney test of differences in cumulative 
distribution functions.” This term was used in the last paragraph of the “Materials and 
Methods” and in Table 1. 

Davis et  al. have reported an error in their article “A Retrospective Assessment of 
Occupational Exposure to Elemental Carbon in the U.S. Trucking Industry” [Environ 
Health Perspect 119:997–1002 (2011)]. On p.  1001 of their article (the next to last 
paragraph of the “Discussion”), there was a coding error in the original calculation: The 
percentage of person-years prior to 1971 was 8% and not 1.1%, as stated in the article.
The corrected sentence is as follows:

Although this extrapolation period does not cover the entire period of exposure relevant to the epidemiologic 
cohort, the missing years before 1971 represent a small percentage of the person years (8%) in the 
epidemiologic cohort. We are currently exploring options for assigning exposure levels for periods before 1971.

The authors apologize for the error.


